Characterization of Mineral and Synthetic Vitreous Fibers with Digital Stereo Microscopy


  • Andrea Chiappa Aeronautica Militare Centro sperimentale volo- Pomezia, Roma
  • Carlo Iacovella Aeronautica Militare Centro sperimentale volo- Pomezia, Roma
  • Daniele Raponi Aeronautica Militare Centro sperimentale volo- Pomezia, Roma
  • Guido Zucca Bayer Healthcare Manufacturing, Garbagnate Milanese, Milano
  • Elena Lupo Bayer Healthcare Manufacturing, Garbagnate Milanese, Milano



MOD, SEM, Inductively Coupled Plasma Optical Emission, Man Made Vitreous Fibers, Man Made Mineral Fibers


The measurement and the characterization of the Vitreous Artificial Fibers (FAV) is taking strong attention in recent years due to the fact that they are, to date, the most frequent alternative to asbestos fibers.
The legislation provides for a chemical and morphological characterization of the fibers. The latter is carried out by means of electron microscopy, a technique that is characterized on the one hand by its high accuracy in morphological characterization but on the other by the high times and unit costs of the analysis.
In the last years microscopic investigation techniques have had a notable impulse through the use of Digital Optical Microscopy (MOD) which has allowed to obtain increasingly accurate and detailed images and a depth of field, comparable to Scanning Electron Microscopy (SEM) .
The present study reports the results obtained on FAV present in bulk samples, correlating MOD and SEM for 10 different real fibrous materials, examined first in MOD, a technique requiring a very simple sample preparation, and then in SEM after metallization. With each technique, 300 fields were examined for each sample and the correlation values obtained (ranging from 0.965 to 0.997) furthermore, the statistical tests carried out are in support of the equivalence of the two analytical approaches.
The MOD is therefore presented as an instrumental alternative cheaper, practical and versatile than SEM, also in light of the possibility of chemically characterizing the elemental composition of the total fibers taken on the filter in a given exhibition scenario, being able to provide complementary indications to the count of fibers, obtainable after filter mineralization and subsequent elemental both in trace and ultra-trace analysis.


N. C. o. T. Inc., «Man Made Vitreosu Fibers: Nomenclature Chemical and Phisyical properties,» ICPS WHO 27 Stamford CT Owens Cornign Fiberglass, 1991.

IARC, «Monograhp on the evaluation of Carcinogenic risk to humans Mn Made Mineral Fibers and Radon,» Iarc Press Lyon, vol. 43, pp. 33-171, 1988.

IARC, «Man-made Vitreous Fibres Summary of Data Reported and Evaluation,» Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 81, 2002.

D. G. S. d. R. Lombardia, Linea guida per la bonifica di manufatti in posa contenenti Fibre Vetrose Artificiali (FAV) Allegato A decreto 13451 (22/12/2010).

A. M. Z. ,. A. O. ,. A. C. ,. F. B. D. R. Antonella Campopiano, «Glass fiber exposure assessment during ceiling installation by European Standard EN 689: study of airborne fiber distribution,» Atmospheric Pollution Research , n. 3, pp. 192-198, 2012.

A. Brown, «chrystalline silica in heated man made vitreous fibers: A review,» Regulatory Toxicology and Pharmacology, vol. 68, pp. 152-159, 2014.

G. K. L. ,. L. L. C. R. ,. J. Y. ,. S. R. D. P. James E. Lockey, «A Longitudinal Study of Chest Radiographic Changes of Workers in the Refractory Ceramic Fiber Industry,» Occupational and Environmental Lung Disease , vol. 121, n. 6, pp. 2044-2051 , 2002.

H. P. B. R. K. K. L. G. H. Harrison P., «Regulatory risk assessment approaches for synthetic mineral fibres,» Regulatory Toxicology and Pharmacology, vol. 73, pp. 425-441, 2015.

F. G. Z. Gualtieri, «The Termal trasforamtion of MMVF and safe recycling as secondary raw materials,» Journal of Hazardous Materials, vol. 162, pp. 1494-1506, 2009.

T.-M. W. C. L. S. s. C. T. Sheng fu yang, «MMVF produced from inciniretor ash using the thermal Plasma technique and application as reinforcement incncrete,» journal of Hazardous Materials, vol. 182, pp. 191-196, 2010.

Min Salute, ISS, INAIL ARPAE, «Linee Guida per l'applicazione della normativa inerente ai rischi di esposizioni e misure di prevenzione per la tutela della salute,» Conferenza Permanente Stato Regioni e Province Aut., 2016.

WHO, «Determination of airborne fibre number concentrations,» 1997.

S. O. G. M. Arcari C., «Valutazione igienistica più appropriata dell'esposizione a fibre minerali vetrose,» Gruppo Interregionale Fibre C.T.I.P.L.L..

G.U. UE, «Reg. CE n. 761/2009,» vol. All II. A.22.

ARPA RE, AUSL Piacenza, ISS Roma, INAIL Contarp, ASL VT, Classificazione di MMVFs determinazione dei diametri e controllo fra laboratori, Studio sull'applicazione di metodi microscopici alla

determinazione del diametro medio delle MMVFs ai fini della verifica del requisito previsto dalla nota R del DM 1.9.98..

D. B. A. F. G. S. P. E. B. Andrea Bloise, «Trace elements in hazardous mineral fibres,» Environmental Pollution, vol. 216, pp. 314-323, 2016.